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one cylindrical 4-branes, whose interiors are capped using the most general possible 4D flat

solution of the 6D field equations. By so doing we show that such a cap is always possible

for any given bulk geometry, and obtain an explicit relationship between the properties

of the capped 4-branes and the various parameters which describe the bulk solution. We

show how these branes generically stabilize the size of the extra dimensions by breaking

the scale invariance which relates classical solutions to 6D supergravity, and we compute

the scalar potential for this modulus in the 4D effective theory. The lifting of this marginal

direction provides a natural realization of the Goldberger-Wise stabilization mechanism in

six dimensions.
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1. Introduction

Six-dimensional supergravity [1 – 4] has recently emerged as being a useful theoretical work-

shop within which to investigate phenomena which often generalize to systems having even

more dimensions. Six dimensions are ideal for this purpose inasmuch as there are enough

dimensions to permit the physics of most interest — such as chiral fermions [1], intricate

Green-Schwarz anomaly cancellation [5] and flux-stabilized compactifications [1, 6]. Yet

there are also few enough dimensions to allow the relevant field equations to be solved

explicitly, allowing a detailed exploration of features which are more complicated to inves-

tigate in a 10- or 11-dimensional context.

Interest in six dimensions has been further sharpened by the recognition that it can

provide significant insights into phenomenological problems in its own right. Prominent

among these is the potential for having extra dimensions large enough to be relevant

to precision measurements of gravity on micron length scales [7], and the potential of

having the scale of gravity be as low as the weak scale [8]. Its supersymmetric version,

with supersymmetry broken by branes, provides a realization of weak-scale supersymmetry

breaking which does not predict the existence of superpartners for standard particles like

the electron [9], and so whose implications for colliders differs considerably from standard
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supersymmetric scenarios. It may yet provide an attractive approach to the cosmological

constant problem [10]–[14], by building on the observation that higher-dimensional theories

can break the link on which the cosmological constant problem rests: the link between the

4D vacuum energy density (which we believe to be large) and the curvature of 4D spacetime

(which we observe to be small) [15] – [18].

The study of the physics of 6D supergravity was considerably advanced by the discovery

of the most general class of compactifications to 4D flat space on an axially symmetric extra

dimensional geometry [19, 11] which involve only the fields of the supergravity multiplet

itself. Because these are the most general such solutions, they allow a more systematic

study of the circumstances under which the observed, noncompact four dimensions are

flat. In particular, these solutions are found to be singular at one or two locations within

the extra dimensions [20], with the singularities being interpreted as representing the back-

reaction of codimension-two 3-branes whose presence sources the fields described by the

bulk fields under consideration. Of pressing interest is the identification of the kinds of

brane properties which give rise to geometries with four flat observed dimensions.

Unfortunately, the characterization of the required brane properties is more compli-

cated for codimension-two objects than it is for the more familiar codimension-one config-

urations familiar from Randall-Sundrum compactifications [21]. This is because the bulk

fields sourced by higher codimension objects generically diverge at the positions of these

objects. For this reason all detailed connections between bulk and brane properties have so

far relied on the use of ‘thick’ branes — i.e. explicit models of the internal brane structure

which allow the bulk-field singularities to be resolved, and smoothed out [22 – 25].

Our purpose in the present paper is to systematize this smoothing analysis to the

general class of 4D flat solutions known for axially-symmetric internal geometries. We

do so in order to provide a sufficiently general class of singularity resolutions to allow a

meaningful mapping to be made between the properties of the resolved branes and those of

the bulk geometries which they source. We resolve the bulk-field singularities at the source

3-branes by cutting off the bulk geometry with an explicit (but broad) class of cylindrical

4-branes which consistently couple to all of the relevant bulk fields. Their interiors are then

capped off using the most general smooth, 4D-flat and cylindrically symmetry solutions to

the same 6D supergravity equations as are solved by the bulk configurations.

Our main result is to provide explicit relations between the properties of the 4-branes

(and their capped geometries) and those of the external bulk, a connection which pays at

least two dividends.

• First, by sharpening the general relations between the brane and the bulk, our results

provide the tools required to definitively explore the sensitivity of bulk properties to

the UV structure on the source branes.

• Second, because the capped branes generically break the classical degeneracy between

re-scaled bulk geometries, their presence lifts this degeneracy and so provides a stabi-

lization mechanism which relates the size of the extra dimensions to properties of the

source branes. This stabilization mechanism can be regarded as a particular form
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of the general Goldberger-Wise mechanism [26] which arises particularly naturally

within 6D supergravity.

Our presentation of these results proceeds as follows. Next, in section 2, we review the

general 4D flat, cylindrically symmetric solutions of ref. [19], and use these to identify the

form taken by the smooth geometries which cap the interiors of the cylindrical 4-branes.

Section 3 then follows with a detailed discussion of the matching conditions which apply

at the position of the 4-branes, and use these to identify the relationships which must exist

between the parameters of the bulk solutions and those which govern the capped geometries

and the intervening 4-branes. Section 4 then focusses on the implications of these relations

for the parameters which govern the sizes of the bulk and capped geometries, and identify

the choices which must be made on the branes in order to ensure a large hierarchy between

the size of the bulk and the size of the ‘thick’ branes. Some conclusions are summarized in

section 5.

2. Bulk solutions to 6D chiral supergravity

We next review the properties of the field equations of 6D gauged chiral supergravity [2 – 4],

and present the most general solutions to these equations for which the induced geometry

of the non-compact 4D directions is flat [19, 11, 20].

2.1 6D field equations

The action whose variation gives the field equations of interest is part of the Lagrangian

density for 6D chiral gauged supergravity, and is given by1

L√−g
= − 1

2κ2
gMN

[

RMN + ∂Mφ∂Nφ
]

− 1

4
e−φ FMNF MN − 2g2

κ4
eφ , (2.1)

where φ is the 6D scalar dilaton, and F = dA is the field strength for the gauge potential,

AM , whose flux in the extra dimensions is what stabilizes the compactifications. The

couplings g and κ have dimensions of inverse mass and inverse mass-squared, respectively.

(We keep κ2 explicit for ease of comparison with the various conventions which are used

in the literature.)

These expressions set some of the bosonic fields of 6D supergravity to zero, as is

consistent with the corresponding field equations (see however ref. [29] for solutions which

do not make this assumption). The field equations for φ, AM and gMN are:

⊔⊓φ +
κ2

4
e−φ FMNF MN − 2 g2

κ2
eφ = 0

DM

(

e−φ F MN

)

= 0 (2.2)

RMN + ∂Mφ∂Nφ + κ2e−φ FMP FN

P +
1

2
(⊔⊓ φ) gMN = 0 .

1The curvature conventions used here are those of Weinberg’s book [27], and differ from those of

MTW [28] only by an overall sign in the Riemann tensor.
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The lagrangian density, eq. (2.1), has an important classical scaling property which

plays a role in what follows: it re-scales as L → e2ωL when the fields undergo the constant

re-scalings gMN → eω gMN , eφ → eφ−ω and AM → AM . Although it is not a symmetry of

the action, it is a symmetry of the field equations and so its action always relates classical

solutions to one another.

There is an ever-growing literature on the exact solutions to these equations, describing

static compactifications of 6D down to 4D [2, 10, 11, 19, 20], as well as 4D de Sitter

solutions [30], time-dependent solutions to the linearized equations [31, 32] and exact scaling

solutions [33]. Our interest in what follows is in those which are cylindrically symmetric

and asymptotically flat.

Boundary contributions. For later purposes we also record here the additional

Gibbons-Hawking term [34] with which the above action must be supplemented when the

field equations are investigated in the presence of boundaries. If the 6D spacetime region

of interest, M , has a 5D boundary, Σ = ∂M , then the full action for the bulk fields is

S =

∫

M
d6x L −

∫

Σ

√−γ K , (2.3)

where2 γmn denotes the induced metric on Σ and K = γmnKmn, is the trace of the extrinsic

curvature tensor, Kmn, on Σ.

2.2 General bulk solutions

The most general axially-symmetric 4D-flat solutions to these bulk equations of motion are

given by metrics of the form

ds2 = eω−pW2(η)ηµνdxµdxν + A2(η)W8(η)dη2 + A2(η)dψ2, (2.4)

where xµ label the four noncompact dimensions, and {η, ψ} are coordinates in the two extra

dimensions, satisfying the periodicity condition 0 ≤ ψ ≤ 2π. Solving the field equations,

using for simplicity units for which κ2 = 1, then gives3 the following formulae for the

unknown functions A(η) and W(η) [19]

W4 =
∣

∣

∣

qλ2

2gλ1

∣

∣

∣

cosh[λ1(η − ξ1)]

cosh[λ2(η − ξ2)]

A−4 =

∣

∣

∣

∣

2g q3

λ3
1λ2

∣

∣

∣

∣

e−2(λ3η+ω) cosh3[λ1(η − ξ1)] cosh[λ2(η − ξ2)]

while e−φ = W2 eλ3η+ω and Fηψ =
qA2

W2
e−λ3η−ω . (2.5)

Here q, ω, λi (i = 1, 2, 3) and ξa (a = 1, 2) are arbitrary integration constants, subject

only to the constraint λ2
2 = λ2

1 + λ2
3. The role of the constant p is discussed further below.

2In the following we use capital latin letters for 6D indices (M, N) which run from 0 . . . 5; lower-case

latin letters for 5D indices (m,n) which run over the 4-brane directions, 0 . . . 4; and greek letters (µ, ν) for

4D indices which run over the noncompact dimensions, 0 . . . 3.
3Beware that ref. [19] instead uses κ2 = 1

2
.
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Notice that the signs of both λ1 and λ2 are irrelevant in these solutions, and so without

loss of generality we take λ1 > 0 and λ2 > 0. Also, since in all subsequent equations it is

only the magnitude of g which appears, we simplify notation by writing g instead of |g|.
For later convenience it is useful to display here the form of a gauge potential, AM ,

whose differentiation gives the above field strength, Fηψ :

Aψ =
λ1

q

(

tanh [λ1 (η − ξ1)] + α
)

, (2.6)

where α is an arbitrary integration constant.

The parameters p, ω and ξ1. The parameters p and ω appearing in eq. (2.4), may

appear unfamiliar to aficionados of ref. [19], since they are not seen in the solutions given

there. They do not do so because each corresponds to a symmetry direction, and so for

simplicity they are both removed in ref. [19]. We reinstate them here because we shall find

that their removal is not similarly possible for the bulk and for the cap geometries which

we consider shortly.

The symmetry corresponding to additive shifts of the variable ω is just the classical

scale invariance of the field equations discussed above. The symmetry corresponding to p

is similarly given by rigidly re-scaling the 4D metric, gµν → e−p gµν . This can be seen to

be a symmetry of the field equations, eqs. (2.2), once these are restricted to the ansatz of

eq. (2.4) together with φ = φ(η) and Aψ = Aψ(η). (Notice to this end that this ansatz

implies in particular that the 4D part of the Ricci tensor, Rµν = RM

µMν , scales in the same

way as does the 4D metric, gµν .)

There is a third parameter in eqs. (2.5), say ξ1, which could also have been eliminated

in this way, since it can be removed by a suitable choice of the origin for the coordinate η.

More formally, the field equations, eqs. (2.2), enjoy the symmetry η → η + δ, for constant

δ, although the solutions, eqs. (2.5), do not. So applying such a shift to any given solution

generates a one-parameter set of new solutions. In fact, inspection shows that the new

solution obtained differs from the original one simply by making the changes

ξi → ξi + δ , ω → ω − λ3 δ and p → p + λ3 δ . (2.7)

This fact is important later since it tells us that one of the parameters which governs the

bulk solutions can be arbitrarily removed by making an appropriate choice for the origin

of coordinates for η. This means that one of these parameters, say ξ1, has no physical

meaning and so one might wonder why we include it. The reason is that when branes are

included, it is useful to use the η-shift symmetry to place them at convenient locations.

Since we have then used up this symmetry, the parameter ξ1 takes on a physical significance

to do with the brane location.

Singularities. The bulk solutions of eqs. (2.5) are regular for all finite η, but generically

are singular as η → ±∞. The nature of these singularities is most easily seen by trans-

forming to proper distance, dρ = AW4 dη. In this limit the extra-dimensional part of the

metric becomes dρ2 + Cρadψ2, which has a curvature singularity at ρ → 0 provided a 6= 2.
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If a = 2, the geometry has a conical singularity when a = 2 and C 6= 1. When a = 2

and C = 1 the solution is completely nonsingular at ρ = 0. (The only solution having no

singularities at all is the Salam-Sezgin solution of ref. [1].)

Inspection of the asymptotic forms of eqs. (2.5) shows that both of the singularities

(i.e. those at η → ±∞) are conical if and only if λ1 = λ2 ≡ λ (and so λ3 = 0). For the

4D flat solutions considered here either both singularities are conical or neither of them

are (see ref. [30] for non-flat solutions having only one conical singularity). When ξ1 6= ξ2

the geometries with conical singularities are generically warped, giving the solutions of

ref. [11]. However, if ξ1 = ξ2 the conical solutions degenerate into the unwarped ‘rugby

ball’ solutions of ref. [10].

Physically, the singularities at η → ±∞ indicate the presence of codimension-two

source branes at these positions, with the singular behaviour arising because of the back-

reaction of these branes onto the bulk fields. Furthermore, the precise kind of singularity

is expected to be related to the properties of these source branes [35, 20, 33], with branes

that source the dilaton field φ typically giving rise to a bulk scalar field configuration which

diverges at the brane position, and so whose energy density can give rise to curvature

singularities there.

Our goal in this section is to sharpen this connection, by relating more precisely the

integration constants of the bulk solutions to the properties of the two source branes. We

do so by explicitly resolving the singularities at η → ±∞ in terms of a model of the

microscopic structure of these two codimension-two branes.

2.3 Capped solutions

To this end we model each of the source branes as a cylindrical codimension-one 4-brane,

situated at a fixed value of η, whose interior is filled in with one of the above bulk solutions

that is nonsingular everywhere within the interior of the cylinder.

Consider then pasting together the following two metrics, along the 4+1 dimensional

surface at η = ηa:

dŝ2 = eωa−paŴ2(η)ηµνdxµdxν + Â2(η)Ŵ8(η)dη2 + Â2(η)dψ2, −∞ < η ≤ ηa,

ds2 = eωW2(η)ηµνdxµdxν + A2(η)W8(η)dη2 + A2(η)dψ2, ηa ≤ η ≤ ηb,

with a similar splicing being performed at η = ηb onto a nonsingular cap geometry which is

defined for ηb < η < ∞. Codimension-one 4-branes will be located at the two boundaries

η = ηa and η = ηb, whose properties we determine below by using the appropriate jump

conditions. Notice that we use the freedom to re-scale coordinates to set p = 0 in the bulk

geometry (for ηa < η < ηb), but having done so we cannot also remove the dimensionless

parameter pa (or pb) in the cap region.

For convenience we make here the choice that the coordinate location of the brane in

the bulk coordinate system, ηa, is the same as its location in the cap coordinate system,

η̂a. There is generically no reason for these two numbers to be the same, but as discussed

earlier we may use the shift η-shift symmetry, eq. (2.7), to enforce ηa = η̂a. Having done

this, we see that one of the previously unphysical parameters in the cap, say ξ1a, takes on

physical significance as it replaces η̂a.
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For the cap solution which applies for η < ηa we take one of the geometries of eqs. (2.5),

subject to the condition that it be singularity free as η → −∞. This is only possible if it

satisfies λ3 = 0 — and so λ1 = λ2 ≡ λa — leading to the form

e−φ̂ = Ŵ2 eωa ,

Ŵ4 =
∣

∣

∣

qa

2ga

∣

∣

∣

cosh[λa(η − ξ1a)]

cosh[λa(η − ξ2a)]

Â−4 =
∣

∣

∣

2ga q3
a

λ4
a

∣

∣

∣
e−2ωa cosh3[λa(η − ξ1a)] cosh[λa(η − ξ2a)]

F̂ηψ =
qaÂ2

Ŵ2
e−ωa . (2.8)

Similarly to the bulk case, we are free to take λa > 0. Also, as was done with g, for

simplicity we write ga in place of |ga|. We are led in this way to the following 7 integration

constants describing each capped geometry: λa, pa, qa, ωa, ξ1a, ξ2a and ηa. By contrast, the

constant ga is not an integration constant, but is the UR(1) gauge coupling which appears

in the bulk action whose equations of motion govern the solutions of interest. Although

we keep ga and g distinct in what follows, this is not crucial for our results, and one could

instead choose to use the same action for the cap regions and the bulk between the two

branes: ga = g.

Requiring the cap geometry to be smooth for η → −∞ imposes the following relation

amongst the integration constants:

|qa| = 2λaga eλa(ξ2a−ξ1a). (2.9)

In what follows we regard this last equation as fixing the combination ξ2a − ξ1a. When the

result satisfies ξ1a 6= ξ2a the capped geometry is warped, and we refer to it as a ‘tear drop’.

In the special case ξ1a = ξ2a ≡ ξa — i.e. when |qa| = 2λaga — the cap geometry instead

degenerates into a hemisphere.

Parameter counting. For future convenience it is useful at this point to count the

number of integration constants associated with each of the solutions.

• The Bulk: Using the coordinate freedom to re-scale gµν and to shift η, we may

set p = 0 and fix ξ2 to a particular value. This leaves the general bulk solutions

characterized by the 5 integration constants λ1, λ2, ξ2, q and ω.

• The Caps: The same coordinate freedom cannot again be used to similarly simplify

the teardrop cap geometries for the regions η < ηa and η > ηb. Once one parameter

(e.g. ξ2a) is used to ensure the cap geometry is everywhere smooth — c.f. eq. (2.9)

— each cap is therefore described by 6 parameters. For the cap at η < ηa these are

λa, ξ1a, qa, pa and ωa, together with the 4-brane location, ηa. For the cap at η > ηb

we instead have λb, ξ1b, qb, pb, ωb and ηb.

To these parameters we must also add those that characterize the 4-brane action, as is

discussed in some detail in the next section.

– 7 –
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We do not include the gauge potential integration constant, α, in the above counting

because we handle its matching conditions separately in what follows. Besides α, the gauge

potential also potentially hides other moduli describing how the background gauge field is

embedded within the full gauge group. This can show up in the present analysis by making

the gauge coupling constant, e, associated with the background gauge field potentially

different from the coupling g which appears in the supergravity action, eq. (2.1), and so

also in the solutions, eqs. (2.5) [10, 11].

3. Matching conditions

We next impose the matching conditions which apply across the 4-brane position, where

the cap geometry meets that of the bulk. These come in two types: continuity of the fields

gMN , AM and φ across η = ηa, and jump conditions which relate the discontinuity in the

derivatives of these fields to properties of the 4-brane action.

3.1 Continuity conditions

Continuity of the bulk fields at each brane position provides 4 conditions among the pa-

rameters which define the caps. For instance, continuity across the 4-brane situated at ηa

gives:

eωa−paŴ2(ηa) = eωW2(ηa) , Â2(ηa) = A2(ηa) , φ̂(ηa) = φ(ηa) (3.1)

and

Âψ(ηa) = Aψ(ηa) . (3.2)

After some simplification, the three conditions of eqs. (3.1) reduce to the following

relations amongst the parameters of the capped and bulk solutions

cosh[λ1 (ηa − ξ1)]

cosh[λa (ηa − ξ1a)]
=

∣

∣

∣

λ1qa

λaq

∣

∣

∣
(3.3)

cosh[λ2 (ηa − ξ2)]

cosh[λa (ηa − ξ2a)]
=

∣

∣

∣

ga λ2

g λa

∣

∣

∣
e2(ω−ωa+λ3ηa) (3.4)

pa = λ3ηa , (3.5)

with a similar set of relations holding for brane b. As we see below in more detail in

subsection (4.1), these equations can be regarded as fixing the three parameters pa, ξ2a

and qa, leaving λa, ωa and ηa free.

Topological constraint. We treat the continuity condition for the gauge potential sep-

arately, because of a topological subtlety which arises in this case. Recall that the gauge

potential for the bulk and capped regions can be written in the form

Aψ =
λ1

q

(

tanh [λ1 (η − ξ1)] + α
)

ηa < η < ηb

Âψ =
λa

qa

(

tanh [λa (η − ξ1a)] + 1
)

−∞ < η < ηa (3.6)

– 8 –
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where the integration constant is chosen in the capped region to ensure that Aψ vanishes

as η → −∞, as is required for a nonsingular gauge potential. The same reasoning applied

to the second capped region similarly gives

Aψ =
λ1

q

(

tanh [λ1 (η − ξ1)] + α′
)

ηa < η < ηb

Âψ =
λb

qb

(

tanh [λb (η − ξ1b)] − 1
)

ηb < η < ∞ (3.7)

where the integration constant is in this case chosen in the capped region to ensure that

Aψ vanishes as η → +∞.

Naively we would determine α and α′ by working within a gauge for which Aψ is

continuous for all η. However, the crucial point is that there is in general a topological

obstruction to making such a choice for AM everywhere. Instead we choose a gauge for

which Aψ(ηa) = Âψ(ηa) and Aψ(ηb) = Âψ(ηb), and use these conditions to determine α and

α′. But then α′ and α cannot be taken to be equal on the region of overlap, ηa < η < ηb,

but must differ instead by a gauge transformation. Following standard arguments, this

leads to the quantization condition

λ1

q

(

α − α′
)

=
N

e
(3.8)

where N is an integer, and e is the gauge coupling for the background gauge field (which

need not equal g if the background flux is not the one gauging the specific UR(1) symmetry).

We find in this way that eq. (3.8) implies the following quantization condition on the

various parameters:

N

e
=

λ1

q

(

tanh[λ1(ηb − ξ1)] − tanh[λ1(ηa − ξ1)]
)

+
λa

qa

(

tanh[λa(ηa − ξ1a)] + 1
)

− λb

qb

(

tanh[λb(ηb − ξ1b)] − 1
)

. (3.9)

This generalizes to the case of thick branes the well-known Dirac quantization condition

N/e = 2λ1/q [10, 36], which is retrieved from eq. (3.9) in the thin-brane limit obtained by

taking ηa → −∞ and ηb → +∞.

Such arguments show that in general the continuity of the gauge potential across the

two 4-branes, η = ηa and η = ηb, determines the integration constants, α and α′ which

are specific to the gauge potentials. But the topological constraint then implies a single

additional condition, eq. (3.9), which relates the bulk parameters, λ1, ξ1 and q, to the

undetermined brane quantities, ηa, ξ1a, ηb, ξ1b and the flux integer N .

3.2 Jump conditions

Having examined the continuity conditions, we next examine the relevant jump conditions

which govern the discontinuity of derivatives of the bulk fields across the brane positions

at η = ηa and η = ηb. These junction conditions relate any such a discontinuity to the

dependence of the intervening 4-brane action, S, on these bulk fields, and may be derived

– 9 –
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by integrating the equations of motion across a narrow interval around the 4-brane position:

ηa−ǫ < η < ηa+ǫ, with ǫ taken negligibly small. Specialized to the metric these conditions

are known as the Israel junction conditions [37].

One finds in this way

[Kmn]J = −Tmn , [
√
−g e−φF ηm]J = − δS

δAm
and [

√
−g ∂ηφ]J = −δS

δφ
, (3.10)

where we use the definition [f(η)]ηa
≡ f(ηa + ǫ)− f(ηa − ǫ). Here we define K = γmnKmn

and Kmn = Kmn −γmnK, where Kmn is the extrinsic curvature of the appropriate 4-brane

surface.

4-Brane action. In order to proceed we require an ansatz for the 4-brane action. Con-

sider therefore the following general choice

S = −
∫

Σ
d5x

√−γ

[

V (φ) +
1

2
U(φ)(DmσDmσ)

]

, (3.11)

where γmn is the induced metric on the brane, and V (φ) and U(φ) are functions which

determine the 4-brane couplings to the 6D dilaton.

Following ref. [22] we introduce a Stueckelberg field, σ, living on the brane, whose

gauge covariant derivative is Dmσ = ∂mσ − eAm. We imagine this to be the low energy

effective action obtained by integrating out the massive mode of some brane-localized

Higgs field, H = v eiσ, where v is an appropriate expectation value. Physically, this

field describes supercurrents whose circulation can support changes in the background

flux across the position of the 4-brane.(We return to the necessity for including such a

field in subsequent sections.) The equation of motion for σ, together with the periodicity

requirement ψ ≃ ψ + 2π, allows us to write the background configuration for σ as

σ = k ψ, (3.12)

for some integer k ∈ Z.

With these choices the jump conditions, eqs. (3.10), become

[Kµν ]J = −Tµν (3.13)

[Kψψ ]J = −Tψψ (3.14)

[
√−g e−φF ηψ ]J = −eU

√−γ Dψσ (3.15)

[
√−g ∂ηφ]J =

√−γ

[

dV

dφ
+

1

2
(DmσDmσ)

dU

dφ

]

, (3.16)

where the energy-momentum tensor derived from the above action is

Tµν = −eω

(W
A

)2 [

A2V +
1

2
U(k − eAψ)2

]

ηµν

Tψψ = −
[

A2V − 1

2
U(k − eAψ)2

]

. (3.17)

Here we see one reason for including the Stueckelberg field: without the function U the

expressions for Tµν and Tψψ are not independent since their ratio would be independent

of parameters from the 4-brane action, leading to too restrictive a set of geometries which

could be described in the bulk.
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Evaluating the junction conditions. We next specialize the junction conditions to

the explicit bulk fields discussed above. We first require the extrinsic curvature, Kmn,

evaluated on both sides of the brane. In the bulk region, the unit normal to surfaces of

constant η is

nM = AW4 δη
M (3.18)

and so the extrinsic curvature is given by Kmn = ∇mnn = −AW4 Γη
mn, where Γη

mn is the

Christoffel symbol calculated from the full 6D metric. We find

Kµν = − eω

AW2

[

3W ′

W +
A′

A

]

ηµν

Kψψ = −4AW ′

W5
, (3.19)

where primes denote differentiation with respect to η. Similarly, in the cap regions we have

K̂µν = −eωa−pa

ÂŴ2

[

3Ŵ ′

Ŵ
+

Â′

Â

]

ηµν

K̂ψψ = −4ÂŴ ′

Ŵ5
. (3.20)

• Evaluating the (µν) Israel junction condition at η = ηa then gives4

(

λ3

2
+ e−2(ω−ωa+λ3ηa)λa tanh[λa(ηa − ξ2a)] − λ2 tanh[λ2(ηa − ξ2)]

)

= −W4

[

(AVa) +
1

2

(

Ua

A

)

(ka − eAψ)2
]

(3.21)

where the subscript ‘a’ on V , U and k denotes the corresponding 4-brane property special-

ized to the brane at η = ηa.

• The (ψψ) Israel junction condition similarly gives

[

λ1 tanh[λ1(ηa − ξ1)] − λ2 tanh[λ2(ηa − ξ2)] − e−2(ω−ωa+λ3ηa)
(

λa tanh[λa(ηa − ξ1a)]

−λa tanh[λa(ηa − ξ2a)]
)]

= −W4

[

(AVa) −
1

2

(

Ua

A

)

(ka − eAψ)2
]

. (3.22)

Taking the sum and the difference of these last two conditions allows the isolation of

conditions for Va and Ua separately. It is also easy to see that the resulting equations

always admit real solutions for any value of the bulk parameters and the brane position.

• The junction condition for the gauge field similarly evaluates to

q − qae
−2(ω−ωa+λ3ηa) = −eW4

(

Ua

A

)

(ka − eAψ). (3.23)

Notice that we can eliminate the two brane quantities, Ua and Va, from the previous

three jump conditions to obtain a constraint that does not depend on 4-brane parameters.

4It is understood in what follows that all functions depending on η are evaluated at η = ηa.
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Indeed, by subtracting eq. (3.21) from eq. (3.22), and then dividing the result by eq. (3.23),

we obtain the expression

1
2λ3 + λatanh[λa (ηa − ξ1a)] − λ1tanh[λ1 (ηa − ξ1)]

e−2(ω−ωa+λ3ηa) qa − q
= −ka

e
+

λa

qa

(

tanh[λa(ηa − ξ1a)] + 1
)

.

(3.24)

An identical argument for brane b similarly gives:

1
2λ3 + λbtanh[λb (ηb − ξ1b)] − λ1tanh[λ1 (ηb − ξ1)]

e−2(ω−ωb+λ3ηb) qb − q
= −kb

e
+

λb

qb

(

tanh[λb(ηb − ξ1b)] − 1
)

.

(3.25)

• By contrast, the dilaton junction condition gives a condition on the φ-derivatives of Ua

and Va:

2λ3 + λ1tanh[λ1(ηa − ξ1)] − λ2tanh[λ2(ηa − ξ2)] − e−2(ω−ωa+λ3ηa)
(

λatanh[λa(ηa − ξ1a)]

−λatanh[λa(ηa − ξ2a)]
)

= −2W4
[

AdVa

dφ
+

1

2A
dUa

dφ
(ka − eAψ)2

]

, (3.26)

which, using the (ψψ) Israel jump condition, simplifies to

2λ3 = W4
[

A
(

Va − 2
dVa

dφ

)

− 1

2A

(

Ua + 2
dUa

dφ

)

(ka − eAψ)2
]

. (3.27)

Conditions for scale invariance. Before proceeding it is useful to pause at this point

to record the unique choice for the functions Va and Ua which preserves the classical scaling

symmetry of the bulk equations of motion, corresponding to the transformation ω → ω+∆

and ωa → ωa + ∆.

Inspection shows that the continuity equations remain unchanged by this transforma-

tion because ω and ωa only appear there in the combination ω−ωa. The left-hand-sides of

the various jump conditions remain similarly unchanged. On the right-hand-side, however,

we see that A transforms, and so invariance requires Va(φ) and Ua(φ) to transform in a way

which cancels the transformation of A. Such an invariant choice for Ua and Va is possible

for the Israel and Maxwell jump conditions, eqs. (3.21), (3.22), and (3.23), because within

these Ua and Va only appear with A in the combinations AVa and Ua/A. It follows that

preservation of the classical scaling symmetry requires

Va = vae
φ/2 and Ua = uae

−φ/2 , (3.28)

in agreement with the analysis of ref. [11]. Any other choices for these functions necessarily

breaks the classical scale invariance of the problem.

It then remains to determine what invariance requires for the dilaton jump condition,

eq. (3.27). When this is specialized to the scale invariant case, eqs. (3.28), the right-hand

side degenerates to zero, giving the simple condition λ3 = 0. Besides imposing no new

conditions on Ua and Va, this tells us that scale-invariant brane configurations can only

source bulk geometries satisfying λ3 = 0, and hence only having conical singularities. Since

all of the geometries having two conical singularities are 4D flat [30], we see in detail how

the jump conditions enforce the connection between scale invariance and 4D flatness.
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4. Applications

Given the general bulk and cap solutions, and a complete set of matching conditions, we

may now see what the solutions to these conditions tell us about bulk-brane dynamics

in six dimensions. In this section we use the above formalism to address two questions.

First: given a bulk geometry what kinds of caps are possible? Second: given specific brane

properties, what kinds of bulk are generated? In particular, in this second case we ask

how the breaking of scale invariance by the branes can lead to the stabilization of the

extra-dimensional size.

Answering this last question allows us also to address an issue of potential importance

for phenomenology: what conditions must the cap and bulk parameters satisfy in order to

have a large hierarchy between the volumes of the caps and the volume of the bulk? This

point is important when the regularizing 4-branes and caps are regarded as specifying the

microscopic structure of 3-branes that sit at the singular points of the geometry.

4.1 Capping a given bulk

We begin by studying what kinds of caps can be used to smooth a generic bulk solution.

In this section we therefore regard the 5 bulk parameters λ1, λ2, ξ1, q and ω as given (we

remove both p and ξ2 using appropriate coordinate conditions), and look for solutions for

the kinds of branes which can smooth the singularities at η = ±∞.

We emphasize that our purpose here is simply to show that a regularization procedure

exists for any choice of bulk solution, through an appropriate choice for the 4-branes and

caps. We return in subsequent sections to the relations which must exist between the

parameters governing the branes and caps, due to the interpolation between them of a 4D

flat bulk.

Parameter counting. It is instructive to count parameters and constraints, to get a

sense of whether or not the problem of capping a given bulk is over-determined. To this

end it is worth distinguishing between those parameters which are integration constants in

the capped region, and those which arise within the action, S, governing the 4-brane. We

start by counting only those relations which are independent of the 4-brane action, before

returning to those which are not.

S-independent conditions: we have seen that each cap naively involves 7 integration

constants, λa, ξ1a, ξ2a, pa, qa, ωa and ηa that are related by the smooth-geometry condi-

tion, (2.9), at each cap. Counting the two caps this gives a total of 6+6 = 12 independent

cap integration constants.

At each cap these parameters are subject to 3 continuity conditions, eqs. (3.3)–(3.5),

as well as the 1 jump condition, (3.24) or (3.25), constructed by eliminating U(φ) and

V (φ) from eqs. (3.21)–(3.23). The topological constraint then imposes one more overall

relation which relates the properties of the bulk to those of both caps, giving a grand

total of 4 + 4 + 1 = 9 conditions. Barring other obstructions we then expect to find a

12 − 9 = 3-parameter family of capped geometries which can match properly to the given

bulk.
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S-dependent conditions: in addition to these are the parameters Ua(φ) and Va(φ)

governing the 4-brane action, S. For each brane these two functions are related by the three

remaining conditions, eqs. (3.21), (3.22) and (3.27). Solving the two linear equations, (3.21)

and (3.22), immediately gives Ua and Va as explicit functions of ηa: Ua = Ua(ηa) and

Va = Va(ηa) (where we suppress the dependence on the other cap and bulk parameters).

We are then left with one remaining relation: the dilaton jump condition, eq. (3.27).

Since this requires knowing the derivatives, dUa/dφ and dVa/dφ, further progress requires

making some choices for the functional form of these quantities.

• If Ua and Va are both constant, then both are fixed by eqs. (3.21) and (3.22). In

this case the dilaton jump condition, eq. (3.27), imposes an additional 2 constraints

(one at each cap) on the 3 cap integration constants which remain to this point

undetermined. We are then led to expect a 1-parameter family of capped solutions.

• If Ua and Va preserve scale invariance, then Ua = ua e−φ/2 and Va = va eφ/2, have

2 free parameters. In this case the counting naively goes through as above, with

one change: although ua and va are fixed by solving the Israel junction conditions,

eqs. (3.21) and (3.22), the dilaton jump condition, eq. (3.27), degenerates to λ3 = 0

and so does not further constrain any 4-brane or cap parameters. (None of these

matching conditions fix the scale symmetry ω → ω+∆, ωa → ωa+∆ and ωb → ωb+∆.

However, because we here regard the bulk parameter ω to have been specified this

symmetry does not preclude the determination of ωa and ωb in terms of ω.) We are

therefore led in this case to 3 free parameters in the capped solution.

• More general choices for Ua and Va potentially involve more parameters, and so

allow more freedom of choice for the capped geometry. For instance, if Ua = ua esaφ

and Va = va etaφ, then the three conditions, (3.21), (3.22) and (3.26), provide three

relations amongst the four parameters ua, va, sa and ta, and in particular (3.26) no

longer constrains the parameters of the caps. In this case we’d expect a total of 5

free parameters to describe the capped geometry.

Considerations such as these lead us to expect that capped solutions of the type we

entertain should exist for any given kind of bulk geometry, barring an obstruction to solving

the relevant equations. Furthermore, we expect to find at least a 1-parameter family of such

solutions, and this has a simple physical interpretation: in the absence of the topological

constraint the caps have 2 free parameters, corresponding to the freedom to choose the

positions, ηa and ηb, where we choose to position the two caps. The topological constraint

can then impose one relation amongst these two positions, relating them to the quantum

number, N , which governs the total amount of Maxwell flux.

Notice that our counting here regards U and V as parameters to be adjusted even

though these arise within the brane action rather than as integration constants in the

solutions to the field equations. So the existence of the caps requires these parameters in

the action to be tuned relative to one in a way which depends on the properties of the given

bulk solution. We also do not distinguish here whether the solutions found give positive
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values for U and V , as would normally be required by positivity of the kinetic energy

associated with brane motion (V ) and the Stueckelberg field (U).

Freely-floating 4-branes. The previous section takes the point of view that the φ-

dependence of the 4-brane action can be arbitrarily parameterized, with the parameters

required to cap the given bulk geometry being fixed in terms of the positions of the caps

and other variables. Another point of view is to ask for a 4-brane action to be defined

so that the same 4-brane action can be used at any 4-brane position, for a given bulk

geometry. As we shall see, consistency also requires the cap geometry to be varied as a

function of the brane position. This approach is similar in spirit to what is done for the

actions of end-of-the-world branes which mark the boundary of bulk spaces in discussions

of the AdS/CFT correspondence [38].

This amounts to asking that the ηa-dependence inferred by solving eqs. (3.21)

and (3.22) for Ua(ηa) and Va(ηa) is completely given by the implicit ηa-dependence which Ua

and Va inherit as functions of φ(ηa) (with ηa-independent constants). That is, we demand

Ua(ηa) = Ua[φ(ηa)] and Va(ηa) = Va[φ(ηa)]. We call such a 4-brane action the ‘floating’

action which is defined by the given bulk and capped geometries. In principle, the func-

tional form that this requires for both Ua(φ) and Va(φ) can be inferred in this way using

the known expressions for the bulk dilaton profile, φ(ηa), together with the expressions for

Ua(ηa) and Va(ηa) obtained by solving eqs. (3.21) and (3.22).

Finally, the dilaton jump condition, (3.27), is then read as an additional constraint

on the parameters which govern the capped geometry. To identify this constraint more

explicitly, we notice that we could use either the bulk dilaton profile, φ(η), or the profile

in the cap, φ̂(η), to convert the ηa dependence of Ua and Va into their dependence on the

dilaton. In particular, we have two ways of evaluating the dilaton derivative of the 4-brane

quantities like Ua, which must agree with each other:

(

dUa

dηa

)

=

(

dUa

dφ

)

φ=φ(η)

(

dφ

dηa

)

=

(

dUa

dφ

)

φ=φ̂(η)

(

dφ̂

dηa

)

. (4.1)

Here dφ/dηa = (∂φ/∂η)|η→ηa
, while dφ̂/dηa also includes the implicit dependence on ηa

that that φ̂ acquires through its dependence on the ηa-dependent cap parameters. Collec-

tively denoting these cap parameters by {ĉs} = {λa, ξ1a, . . .}, we have

dφ̂

dη
=

[(

∂φ̂

∂η

)

+

(

∂φ̂

∂ ĉs

)

∂ ĉs

∂ηa

]

η→ηa

. (4.2)

The desired consistency condition on the cap parameters comes from equating (∂φ̂/∂η)η→ηa

obtained by solving eqs. (4.1) and (4.2), with that inferred from the dilaton jump condition,

eq. (3.27).

We see from this that the number of independent constraints on the cap geometry is

the same as it was when we made the simpler assumption that U and V were constants.

We have not yet tried to solve these constraints to determine the functional form for Ua(φ)

and Va(φ) which would be obtained.
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Solving the matching conditions. In order to see in more detail if obstructions to

solutions to the matching conditions might exist, we next examine some of these conditions

in more detail. Recall the counting: each cap is described by 7 integration constants: λa,

qa, ξ1a, ξ2a, ωa, pa and ηa, if the smoothness condition is not used, for a total of 14 once

both branes are included. Smoothness of the caps and continuity at both branes, with the

topological condition cut these down by a total of 9 conditions, leaving 5 undetermined.

There is also one combination of jump conditions at each brane which does not involve

the potentials U and V , reducing us to 3 parameters. If U and V are φ-independent, then

the dilaton jump condition for each brane removes 2 more. This leaves 1 cap parameter

undetermined. By contrast, the integers ka, kb and N describing the monopole flux and

background configuration for the Stueckelberg field are not solved for, but are instead

regarded as choices we get to pick by hand. We show there is a solution to the junction

conditions for a range of ka, kb and N .

A special case: before examining the general case, we first examine in detail a special

case where all of the conditions may be explicitly solved in closed form. In order to do

this, we make the following ansatz for the integration constants, λa and λb:

λa

qa
=

λ1

q
=

λb

qb
, (4.3)

Then, we choose ωa and ωb to satisfy

ω − ωa + λ3ηa = 0 = ω − ωb + λ3ηb (4.4)

while the parameters qa and qb are chosen such that

qa

ga
=

qλ2

gλ1
=

qb

gb
(4.5)

The motivation for these choices comes from the way they simplify the continuity equations.

Eq. (4.3) ensures that the continuity relation, eq. (3.3), simplifies to

λa (ηa − ξ1a) = λ1 (ηa − ξ1) , (4.6)

which we solve for ξ1a, giving

ξ1a = ηa −
λ1

λa
(ηa − ξ1) . (4.7)

Similarly, eqs. (4.4) and (4.5) allow the continuity relation (3.4) to be written

λa (ηa − ξ2a) = λ2 (ηa − ξ2) , (4.8)

with solution

ξ2a = ηa −
λ2

λa
(ηa − ξ2) . (4.9)

Similar results follow for ξ1b and ξ2b using identical arguments.
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Given these conditions, the topological constraint, (3.9), degenerates into

N

e
=

2λ1

q
, (4.10)

which is independent of the brane positions, and so can be regarded as a condition on the

background field gauge coupling, e (which can be altered by adjusting how the background

gauge field is embedded into the gauge group). Similarly, using the choices (4.4) and (4.5)

in (3.24), derived from the jump conditions, leads to the considerably simpler form

2ka

N
= 1 +

(λ3/λ1)

2 [1 − (qa/q)]
, (4.11)

with a similar result for brane b. For λ3 = 0 this last formula requires N to be even, and

was obtained previously for non-supersymmetric 6D models in ref. [25]. If λ3 6= 0, on the

other hand, it instead can be read as giving qa/q in terms of λ3. Identical considerations

similarly apply to brane b. Due to the condition (4.5), the condition (4.11) allows to obtain

a constraint that the parameter ga must satisfy in order to get a solution:

2ka

N
= 1 +

(λ3/λ1)

2 [1 − gaλ2/(gλ1)]
. (4.12)

Next, given assumption (4.3), the smoothness condition, eq. (2.9), reduces to

2gae
λa(ξ2a−ξ1a) =

q

λ1
= 2gbe

λb(ξ1b−ξ2b) , (4.13)

which, using eqs. (4.7) and (4.9), can be reformulated as

e(λ1−λ2)ηa+λ2ξ2−λ1ξ1 =
q

2λ1ga
. (4.14)

This may be regarded as the condition that determines the brane position ηa. Notice that

this last expression, together with its counterpart for brane b, gives the following constraint

relating the positions of the two branes:

(λ1 − λ2) (ηa − ηb) = ln

(

q2

4λ2
1 gagb

)

. (4.15)

The final parameter, pa, is fixed by eq. (3.5) to be pa = λ3ηa.

Finally, we solve the dilaton jump condition and the two Israel junction conditions,

which involve the 4-brane parameters U , V , dU/dφ and dV/dφ. Solving the two Israel

conditions gives the following expressions for Ua and Va:

−2W4AVa =
λ3

2
+ 2 (λa − λ2) tanhλ2 (ηa − ξ2) + (λ1 − λa) tanhλ1 (ηa − ξ1)

−W4

A (ka − eAψ)2 Ua =
λ3

2
+ (λa − λ1) tanhλ1 (ηa − ξ1) . (4.16)

The dilaton matching condition similarly becomes

2λ3 − (λa − λ1) tanhλ1 (ηa − ξ1) + (λa − λ2) tanhλ2 (ηa − ξ2) = F
(

dUa

dφ
,
dVa

dφ

)

(4.17)
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where the function F denotes the combination of the U and V and their derivatives appear-

ing on the right-hand-side of (3.26) (and so F = 0, in particular, if dUa/dφ = dVa/dφ = 0).

As usual, whether this last equation must be read as a new constraint depends on the

functional form which is assumed for Ua(φ) and Va(φ). In particular, if Ua and Va are

constants (or scale invariant), then eq. (4.17) imposes non-trivial additional conditions on

the parameters of the cap geometries, and so generically can obstruct the existence of a

cap geometry unless the bulk parameters are tuned to assure its satisfaction.

Notice that the necessity to tune parameters in the bulk and cap actions arises in this

case because the initial simplifying ansätze, eqs. (4.3), (4.4) and (4.5), make the matching

problem into an over-determined problem, rather than allowing the 1-parameter family of

solutions which are possible in the generic case.

The general case: we now return to solving the matching condition in the general case,

not subject to the ansätze, eqs. (4.3), (4.4) and (4.5). It is convenient to define first the

quantities

Λia = λa(ηa − ξia), Λib = λb(ηb − ξib), (4.18)

and ∆ia = λi(ηa − ξi), ∆ib = λi(ηb − ξi) (4.19)

where i = 1, 2. In our counting, the parameters Λia and Λib replace ξia and ξib, whereas

∆ia and ∆ib are known functions of ηa and ηb.

Recall that there are a total of 14 cap parameters, and these are subject to a total of

11 conditions before the three conditions (per brane) involving U and V are used, leaving

3 parameters undetermined. (Depending on what we assume about the 4-brane action —

such as if U and V are constants — two of these can then be fixed by the dilaton jump

conditions, leaving the single undetermined parameter, although we do not yet apply this

constraint in this section.) Although other choices are possible, we find it easiest to solve

for the cap parameters as functions of the three undetermined quantities (ηa, ηb,Λ1b).

We start with the topological constraint, eq. (3.9), which we simplify by using eq. (3.3)

and its counterpart for brane b to eliminate the combinations λa/qa and λb/qb. Using the

resulting expressions in eq. (3.9) gives

tanh∆1b − tanh∆1a =
qN

eλ1
− εa eΛ1a

cosh∆1a
− εb e−Λ1b

cosh∆1b
, (4.20)

where we define εa = |qa|/qa = sign qa, and similarly for εb and ε. Writing this as εae
Λ1a =

F , with F = F (ηa, ηb,Λ1b) given by

F = cosh∆1a

(

qN

eλ1
− εbe

−Λ1b

cosh∆1b
− tanh∆1b + tanh∆1a

)

, (4.21)

shows that solutions exist so long as we choose εa = sign F , and gives these solutions as

Λ1a = ln |F | . (4.22)
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Using the smoothness condition together with the continuity condition, eq. (3.3), and

the above solution for Λ1a, then gives

Λ2a = ln

∣

∣

∣

∣

λ1ga(1 + F 2)

q cosh∆1a

∣

∣

∣

∣

. (4.23)

As we have now solved for Λ1a and Λ2a in terms of ηa, ηb, and Λ1b, we do not bother to

eliminate these two parameters from future expressions.

We next solve for λa. Starting from eq. (3.24) and using the continuity conditions to

simplify further, we arrive at the expression

λa =
1

tanhΛ1a

(

λ1tanh∆1a −
λ3

2

+

[

1 − εεagaλ2 cosh∆1a coshΛ2a

gλ1 cosh∆2a coshΛ1a

] [

qka

e
− εaλ1e

Λ1a

cosh∆1a

])

. (4.24)

It is important to note that by choosing the integer ka appropriately, we can ensure λa > 0.5

Again, as we have solved for λa in terms of the three required parameters, we will not need

to eliminate it from future equations. Finally, the 3 continuity equations at brane a directly

give

pa = λ3ηa, (4.25)

qa =

(

εqλa

λ1

) (

2F

1 + F 2

)

cosh∆1a, (4.26)

ωa = ω + λ3ηa +
1

2
ln

∣

∣

∣

∣

gaλ2 coshΛ2a

gλa cosh∆2a

∣

∣

∣

∣

. (4.27)

The analysis at brane b is similar, for which we find

Λ2b = Λ1b + ln

∣

∣

∣

∣

q cosh∆1b

2λ1gb coshΛ1b

∣

∣

∣

∣

, (4.28)

λb =
1

tanhΛ1b

(

λ1tanh∆1b −
λ3

2

+

[

1 − εεbgbλ2 cosh∆1b coshΛ2b

gλ1 cosh∆2b coshΛ1b

] [

qkb

e
+

εbλ1e
−Λ1b

cosh∆1b

])

, (4.29)

and

pb = λ3ηb, (4.30)

|qb| =

( |q|λb

λ1

)

cosh∆1b

coshΛ1b
, (4.31)

ωb = ω + λ3ηb +
1

2
ln

∣

∣

∣

∣

gbλ2 coshΛ2b

gλb cosh∆2b

∣

∣

∣

∣

. (4.32)

5One might worry that this is no longer true if the first term in square brackets is zero, but a little

work shows that the condition for this term being nonzero (for arbitrary ka) is equivalent to the condition

Ua 6= 0, which we assume.
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By using the previous expressions for Λ2b and λb, we see that we have solved for |qb| and

ωb in terms of the required 3 parameters. The sign of qb can be determined by the gauge

field jump condition at brane b.

This exhausts all of the matching conditions which do not involve the 4-brane coupling

functions. The value of these functions, U and V , at each brane is then easily obtained

by solving the Israel junction conditions, eqs. (3.21) and (3.22), leaving only the dilaton

jump condition to be solved. If U and V contain enough parameters to allow them and

their derivatives to be varied independently for each brane, then this last condition can be

solved without adding further constraints on the parameters of the cap geometry.

Alternatively, when dU/dφ and dV/dφ are not independent of U and V — such as

when U and V are both φ-independent, or are scale invariant — then the dilaton matching

condition, eq. (3.26), imposes an additional constraint. After some manipulation this can

be written in the form

g cosh∆2a [2λ3 + λ1tanh∆1a − λ2tanh∆2a]

=
g2
a λ1λ2

2q cosh∆1a











(

q2

λ2
1g

2
a

)

cosh4∆1a







(

Ñ − εbe
−Λ1bsech∆1b

)2

1 +
(

Ñ − εbe−Λ1bsech∆1b

)2






− 1











(4.33)

where we define the quantity

Ñ =
qN

eλ1
− tanh∆1b + tanh∆2a . (4.34)

A particularly useful special of this condition takes ηa to be very large and negative (and

ηb to be large and positive). This is a limit of particular interest because it corresponds to

the cap volume being much smaller than that of the bulk (more about this in subsequent

sections). In this limit we have Ñ ≈ −2 + qN/(eλ1) and the previous equation reduces to

g cosh∆2a [2λ3 − λ1 + λ2] =

(

λ2 q

2λ1

)

cosh3∆1a







(

Ñ − εbe
−Λ1bsech∆1b

)2

1 +
(

Ñ − εbe−Λ1bsech∆1b

)2






. (4.35)

Recall that eq. (4.33) — or eq. (4.35) — and its counterpart for cap ‘b’ impose two

conditions on the three remaining free cap parameters, ηa, ηb and Λ1b. In particular, in the

limit of large negative ηa and large positive ηb, this equation is easily solved for ηa because

Ñ is independent of ηa and ηb. In general, the freedom to choose N can be used to help

ensure that solutions exist.

4.2 Bulk geometries sourced by given branes

In the previous section the bulk geometry is considered to be given, and we ask whether

regularizing caps can be constructed. This section adopts a different point of view, wherein

the characteristics of the caps — i.e. all the integration constants that define the cap

geometry and the quantities U and V — are given, and we seek the properties of the bulk
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which results. In particular, our interest is to see whether and how the two caps must be

related to one another, and to check whether the bulk configuration is always of the form

of a GGP solution, with flat four dimensional slices.

Our goal in doing so is two-fold. First, in this subsection, we wish to see whether

this reduced problem is over-determined, and if so what is required in detail of the branes

in order to ensure a solution. Secondly, in section 4.3 we set out to understand how the

volume of the bulk geometry is related to the brane properties, and, by doing so, to exhibit

a stabilization mechanism for the bulk volume. Of particular interest is then to understand

what 4-brane/cap properties are required to ensure the volumes of the capped regions are

much smaller than that of the intervening bulk (as is required if the 4-branes and caps

describe the microscopic structure of more macroscopic 3-branes).

Parameter counting and junction conditions. We now show that counting equa-

tions and parameters suggests we are not completely free to specify the 4-brane action for

brane a arbitrarily if we ask that it interpolate between 4D flat cap and bulk geometries.

This can be done only if the 4-brane action is subject to one constraint equation (as was

argued in ref. [35]), but once this is satisfied there is sufficient information to determine

the parameters describing both the bulk geometry and the properties of brane b.6

To this end, imagine we specify the cap geometry and 4-brane action at a given position

η = ηa. Next recall that there are 7 integration constants characterizing the the bulk

geometry — λ1, λ2, ξ1, ξ2, p, q and ω. (Notice that, although previously we have removed

two of these quantities — ξ1 and p — by suitably adjusting coordinates, this is typically no

longer possible without altering the specified parameters for cap a.) These 7 parameters

are subject to a total of 7 conditions at ηa, consisting of 3 continuity conditions (metric

and dilaton) and 4 jump conditions (Israel, Maxwell and dilaton), suggesting that the bulk

parameters are completely specified in terms of those of the cap and 4-brane at ηa.

As we show in the next section, however, one of these seven equations which is supposed

to determine one of the bulk parameters turns into a constraint equation amongst cap and

brane parameters. Thus, what we find is that for any given cap and brane which satisfies the

constraint, there is a one-parameter family of flat bulks to which we can match. Physically,

it is easiest to interpret this one parameter in the coordinate system where ξ1 = ξ1a = 0.

Recall that in this coordinate system the brane location in the bulk and cap is ηa and

η̂a, respectively, where these two numbers are generically not the same. Here, we again

imagine fixing the cap and brane properties at η̂a, and then solving for six of the seven bulk

parameters: λ1, λ2, ξ2, ω, p, q, and ηa. Thus, this one-parameter family of bulk solutions

corresponds to where we choose to place the brane in the bulk coordinate system. If ηa is

fixed, then we find a unique solution for the bulk.

Continuing to use the coordinate system where ξ1 = ξ1a = ξ1b = 0, we see that once

the bulk geometry is thus inferred, there remain 10 parameters associated with cap b,

consisting of 6 integration constants — λb, qb, ξ2b, ωb, pb, and η̂b — plus the brane position

6To be precise, we find a two parameter family of solutions for the bulk and cap b, corresponding to

where we choose to embed the two branes in the bulk. Once this choice is made, then the bulk and cap b

are unique.
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ηb in the bulk coordinate system, the two 4-brane parameters, Ub and Vb, and one linear

combination of their derivatives. These 10 parameters are then subject to 9 conditions,

consisting of the 7 continuity and jump conditions at the brane location, the smoothness

condition at η → ∞ for cap b and the topological constraint on the Maxwell field. Provided

there are no obstructions to solving these equations, this shows that once we choose the

properties of one brane (subject only to the Hamiltonian constraint), together with the

location of the two branes in the bulk coordinate system, ηa and ηb, then properties of the

other brane and the intervening 4D-flat bulk are precisely dictated. If the properties of

brane b are not adjusted in this way in terms of those of brane a then the intervening bulk

solution cannot be 4D flat, and instead must either be 4D maximally symmetric but not

flat [30] or time-dependent and not Lorentz invariant [33].

This counting bears out, and make more precise, expectations based on earlier stud-

ies of the general properties of bulk solutions to 6D supergravity. In particular, for 4D

maximally-symmetric solutions [30] (including those which are not 4D flat) the bulk ge-

ometry depends nontrivially only on η, and so we may imagine integrating the bulk field

equations in the η direction, starting at brane a and ending at brane b. Since the η-η

Einstein equation does not involve second derivatives of the metric, it represents a ‘Hamil-

tonian’ constraint on those ‘initial’ conditions at brane a which can be consistently used

for such an integration. In this language, the above-mentioned constraint on the allowed

4-brane parameters corresponds to requirements imposed on the 4-brane by matching to

the Hamiltonian constraint in the bulk, restricted to 4D flat geometries [35]. Further-

more, since the bulk geometry is completely specified by integrating forward in η using

the ‘initial’ conditions at brane a, its asymptotic form at brane b is seen to be completely

determined, in agreement with what we find here for explicit 4-brane/cap regularizations

of this asymptotic form.

Explicit solutions. To better see if parameter and equation counting provides the whole

story, we next solve the matching to see whether obstructions to their solutions can exist.

The bulk. The continuity equations, eqs. (3.3) – (3.5), read in this case:

|q| = |qa|
(

λ1 coshΛ1a

λa cosh∆1a

)

, (4.36)

e−2ω = e−2(ωa−λ3ηa)

(

gaλ2 coshΛ2a

gλa cosh∆2a

)

, (4.37)

p = pa − λ3ηa , (4.38)

and can be thought as fixing the bulk parameters q, ω, and p (recall the definitions of the

parameters Λ and ∆ in formulae (4.18) and (4.19)). Note that the sign of q is not yet fixed.

These solutions are given in terms of the four bulk quantities λ1, λ2, ∆1a, and ∆2a, for

which we now solve.

Before proceeding it is convenient to first define four combinations of brane and cap

parameters:

C1 =

(

gacoshΛ2a

2gλa

)

[

ÂŴ4(Va − 2V ′
a) − Ŵ4

2Â
(Ua + 2U ′

a)(ka − eÂψ)2

]

, (4.39)
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C2 =

(

gacoshΛ2a

4gλa

)[

ÂŴ4(5Va − 2V ′
a)

+
Ŵ4

2Â
(3Ua − 2U ′

a)(ka − eÂψ)2 + 4λatanhΛ2a

]

, (4.40)

C3 =

(

εagacoshΛ2a

gcoshΛ1a

)

[

−eUa

qa

(

Ŵ4

Â

)

(ka − eÂψ) + 1

]

, (4.41)

C4 =

(

gacoshΛ2a

4gλa

)[

ÂŴ4(Va − 2V ′
a)

+
Ŵ4

2Â
(7Ua − 2U ′

a)(ka − eÂψ)2 + 4λatanhΛ1a

]

, (4.42)

where primes here denote differentiation with respect to φ. These four parameters will take

the place of Ua(ηa), Va(ηa), their derivatives (which appear in only one linear combination),

and ka. The action for brane a can therefore be equally well characterized by these four

quantities, as by our original parameterization in terms of Ua(ηa), Va(ηa), and derivatives.

With these definitions in hand, the remaining four matching conditions reduce to the

following equations:

C1 = cosh∆2a

[

1 −
(

λ1

λ2

)]
1

2

(4.43)

C2 = sinh∆2a (4.44)

C3 = ε

(

λ1

λ2

)

cosh∆2a

cosh∆1a
(4.45)

C4 =

(

λ1

λ2

)

tanh∆1acosh∆2a. (4.46)

Recalling that both λ1 and λ2 are positive, we see immediately that ε ≡ sign q = sign C3.

We note that this system of equations is over-determined, since there are four equations

but only three unknowns: ∆1a, ∆2a, and λ1/λ2. In fact, by squaring the above equations

it is straightforward to check this constraint is given by

C2
1 − C2

2 + C2
3 + C2

4 = 1. (4.47)

When the above equation is satisfied, then it can be shown that the bulk fields satisfy the

Hamiltonian constraint which ensures 4D flatness.7 Henceforth, we assume that the brane

properties are chosen such that the Hamiltonian constraint is satisfied. In this case, the

solution to eqs. (4.43)– (4.46) is

∆1a = sign(C4) arcosh

[

(

1 +
C2

4

C2
3

)

1

2

]

, (4.48)

∆2a = arsinh(C2), (4.49)

λ1

λ2
=

(

1 − C2
1

C2
1 + C2

3 + C2
4

)

1

2

. (4.50)

7This Hamiltonian constraint is given by eq. (34) in reference [30].

– 23 –



J
H
E
P
0
9
(
2
0
0
7
)
1
2
4

where the range of arcosh is taken be {x ∈ R : x ≥ 0}. It is easy to see that solutions to

these equations exist for any values of the Ci, subject only to the constraint that they obey

eq. (4.47).

As expected from the arguments in the previous section, we indeed find a one-parameter

family of possible bulks. Once this parameter is fixed — corresponding to choosing where in

the bulk we wish to embed the brane — then the bulk solution becomes unique. Henceforth,

we assume that this choice has been made (as can be accomplished by making a specific

choice for p in eq. (4.38)).

Cap b. Having uniquely determined the bulk solution, it remains to determine the prop-

erties of the 4-brane and cap at brane b. In order to find a unique solution, we first specify

the location where we wish to cap the bulk, ηb. Since this analysis is identical to that of

section 4.1, we do not repeat it in detail here, however the three continuity conditions, the

smoothness condition, and the combination of the jump conditions which is independent

of Ub and Vb provide 5 constraints on the 5 cap integration constants pb, Λ2b, λb, qb and ωb

(see eqs. (4.28) - (4.32)). Then, the two Israel junction conditions fix Ub and Vb, and the

dilaton jump condition provides the constraint which fixes the one relevant combination

of derivatives U ′
b and V ′

b . The only cap parameter which is not fixed by these conditions

is Λ1b, and this can be determined from the topological equation (4.20). As expected [30],

both the properties of the bulk and those of the 4-brane and cap at η = ηb are dictated by

those of the brane and cap at η = ηa.

4.3 Volume stabilization and large hierarchy

The previous analysis fixing the seven bulk integration constants in terms of given cap

parameters fixes in particular the integration constant, ω, that parameterizes the bulk

volume. This provides a natural 6D mechanism for stabilizing this bulk volume. In this

section we explore this stabilization in more detail, focussing on the conditions which are

required to obtain a large hierarchy between the volumes of the bulk and the caps. In the

next section we identify the low-energy 4D effective potential which is generated in this

way for ω.

Conditions for a hierarchy. We now ask for the conditions the brane and cap actions

should satisfy to ensure that the cap volumes are much smaller than those of the bulk.

Our point of view here is that the bulk geometry is given, and so would like to phrase the

conditions for a hierarchy in terms of only those parameters over which we have control:

the bulk parameters and the three cap parameters, ηa, ηb, and Λ1b.

In order to have branes whose circumference is small, we seek to ensure A(ηa) and

A(ηb) are much less than one. We see from eq. (2.5) that it is natural to examine for this

purpose the limit ηa → −∞ and ηb → ∞, although in general this need not be sufficient

in itself to have small cap volumes. However, we now argue that sufficient conditions for

obtaining small cap volumes are given by

Λ1a = λa(ηa − ξ1a) ≪ −1

Λ2a = λa(ηa − ξ2a) ≪ −1 (4.51)
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with similar conditions for brane b. Large, negative ηa is not sufficient for small cap

volumes because it does not in itself ensure that these conditions are satisfied. Under these

conditions we may use the asymptotic form for the hyperbolic functions and so obtain the

following expression for volume of cap a

Ωa = 2π

∫ ηa

−∞

dη Â2Ŵ4

≃ π

λa
e2(ω−ωa+pa)(A2W4)|ηa

(4.52)

In arriving at the second line we have used the continuity equations, (3.1), to relate cap

functions to bulk functions. The cap volume must be compared with the bulk volume,

given by the expression

Ωbulk = 2π

∫ ηb

ηa

dη A2W 4

=

(

(2π)2 λ1λ
3
2 e2ω

(2g)3 q

)
1

2 ∫ ηb

ηa

dη
eλ3η

cosh
3

2 [λ2 (η − ξ2)]cosh
1

2 [λ1 (η − ξ1)]
. (4.53)

It is simple to check that the integral in the previous expression is always finite. Then, it

is enough to choose the parameters in the bulk of order one, to obtain Ωbulk ≃ O(1). In

order to obtain a hierarchy between bulk and cap volumes, it is necessary to demand that

Ωa ≪ O(1).

At this point we divide our discussion into two parts: first we consider the ‘special case’

cap solution discussed in section 4.1, whose simplicity allows simple explicit solutions. We

then discuss the same question in the more general case.

The special case. Using the solutions found in the ‘special case’ section together with

the continuity equation (3.4), we may evaluate the cap volume, eq. (4.52), in terms of bulk

parameters:

Ωa ≃ 2π

(

4λ2λ
4
1 ga

g q4

)1/2

exp
[

ω − 2λ1ξ1 + (λ3 + 2λ1) ηa

]

. (4.54)

Now, since the coefficient of ηa in these expressions is positive, it is clear that taking ηa

large and negative corresponds here to making Ωa small. Also, from eqs. (4.6) and (4.8) we

see that the hierarchy assumptions, eq. (4.51), are easily satisfied in the limit we consider.

Thus, we were indeed justified in using the asymptotic form for the hyperbolic functions.

But for the assumptions of the ‘special case’ model, matching also gives the value of

ηa as

(λ2 − λ1)ηa = λ1ξ1 − λ2ξ2 + ln

(

2λ1ga

q

)

, (4.55)

which shows that ηa can be made large and negative if we take ga to be small. Then

equation (4.12) shows that this condition can be achieved by choosing the bulk parameters

such that
2ka

N
≃ 1 +

λ3

2λ1
. (4.56)
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If this condition is satisfied, then the volume of cap a is small. Analogous considerations

for cap b give similar results.

The general case. We now evaluate the cap volume using the general solutions found

earlier. If we also use the hierarchy assumptions, eq. (4.51), and the continuity equation

(3.4), we calculate the cap volume to be

Ωa ≃ 2π

(

g λ1 cosh∆2a

|q|λ2 cosh∆1a

)

(A2W4)|ηa

= πA2|ηa
. (4.57)

For the generic situation of O(1) bulk parameters, we see from eq. (2.5) that A2|ηa
≪

1 in the limit of large |ηa|. Thus, we obtain the desired result: Ωa ≪ Ωbulk ∼ O(1).

Alternatively, if we instead wish to have cap volumes which are O(1) and bulk volumes

which are much larger, we simply need to choose ω ≫ 1 while keeping all other bulk

parameters fixed.

It remains now to show what conditions must be imposed on the bulk parameters

and cap parameters in order to ensure that conditions (4.51) are satisfied. To simplify

this discussion, we only consider the case λ3 = 0. We accomplish this by adjusting the

background gauge coupling, e, so that it is approximately equal to its value, e0 = qN/(2λ1),

in the absence of caps. More precisely, if we define

ǫ =
1

2
e−λ1(ηa−ξ1)

[

qN

λ1e
− 2

]

, (4.58)

then we should take

ǫ ≪ 1 and Λ1b ≫ 1 (4.59)

and, for definiteness, take ηa ≈ −ηb. In this case, the general cap solutions found earlier

satisfy the desired hierarchy conditions (4.51). The analogous hierarchy conditions at brane

b are much simpler to satisfy due to the fact that we get to choose freely Λ1b. For example,

choosing ηb large and Λ1b ∼ ∆1b ≫ 1 guarantees that Λ2b ≫ 1 and so the two hierarchy

constraints are satisfied.

To summarize, we see here how to obtain regularizing caps which are much smaller

than the bulk volume, by appropriately tuning the gauge coupling e and by choosing

large coordinate values for the brane positions. We have also shown that requiring such a

hierarchy at only a single brane is not difficult to achieve in the sense that it involves no

tuning of any bulk parameters.

4.4 Low-energy 4D effective potential

We next dimensionally reduce the capped bulk to 4 dimensions in order to identify more

explicitly how 4-brane action influences the stabilization of the would-be flat direction

parameterized by ω. In this section we restrict ourselves to evaluating the effective 4D

potential for ω within the classical approximation.
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To this end we identify the effective 4D action Seff =
∫

d4x Leff by computing the 6D

action at a one-parameter family of classical solutions labelled by the constant ω:

Seff = Sa + Sb + Scap a + Sbulk + Scap b , (4.60)

where Sa =
∫

d4x La and Sb =
∫

d4x Lb represent the 4-brane action for caps a and b, given

by eq. (3.11), while SM =
∫

M d6xL + SGH(∂M) represents the 6D bulk action, including

the Gibbons-Hawking boundary contribution, defined by eqs. (2.1) and (2.3). The three

last terms correspond to dividing the integration over the 2 extra dimensions into the three

intervals defining the bulk, cap a or cap b.

Following [11], we see that using the 6D field equations, (2.2), to simplify the 6D bulk

action in a region M with boundaries leads to the simple expression (with κ2 = 1)

Scl =
1

2

∫

M
d6x

√−g⊔⊓φcl −
∫

∂M
d5x

√−γ Kcl , (4.61)

which, together with Gauss’ Law, allows the last three terms in eq. (4.60) to be written

Scap a + Sbulk + Scap b = −1

2

∫

d5x
(

[
√−g ∂ηφ + 2

√−γ K]ηa
+ [

√−g ∂ηφ + 2
√−γ K]ηb

)

,

(4.62)

where as before [f(η)]ηa
= f(ηa + ǫ) − f(ηa − ǫ) (and similarly for ηb).

Writing Seff =
∫

d4xLeff , and evaluating the right-hand-side of this last expression

using the Israel and dilaton jump conditions, (3.21), (3.22) and (3.26) finally gives

Leff = 2π
∑

i=a,b

AW4e2(ω−p)

[(

−Vi+
5Vi

4
− 1

2

dVi

dφ

)

+
1

2A2

(

−Ui+
3Ui

4
− 1

2

dUi

dφ

)

(ki−eAψ)2
]

= π
∑

i= a,b

AW4e2(ω−p)

[(

Vi

2
− dVi

dφ

)

− 1

2A2

(

Ui

2
+

dUi

dφ

)

(ki − eAψ)2
]

. (4.63)

Finally, to make the ω-dependence explicit we write A = A0e
ω/2, φ = φ0 − ω, and choose

for concreteness V (φ) = v es φ and U(φ) = u et φ. Identifying Veff = −Leff , we find

Veff(ω) =
∑

i= a,b

[

CV i e
(5/2−si) ω + CUi e

(3/2−ti) ω
]

, (4.64)

where

CV i = π

[

A0W4

(

1

2
− si

)

vi e
siφ0−2p

]

η=ηi

CUi = −π

2

[W4

A0

(

1

2
+ ti

)

ui etiφ0−2p(ki − eAψ)2
]

η=ηi

. (4.65)

It is clear that this potential generically only has runaway solutions when both CUi

and CV i and both of the coefficients of ω in the exponents have the same sign, but has

nontrivial minima when some of these signs differ. Given the explicit relative sign appearing

in eqs. (4.65), and positive ui and vi, we expect that stabilization of ω to be fairly generic.
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The scale invariant case. Of particular interest is the case of scale-invariant branes,

for which we have si = 1/2 and ti = −1/2. In this case, not only do we recover the generic

scale-invariant form for the potential

Veff(ω) = C e2ω with C =
∑

i=a,b

(

CUi + CV i

)

, (4.66)

but we also learn that C = CUi = CV i = 0. This agrees, and makes more precise, the

arguments of ref. [11], wherein the same conclusion was drawn when scale-invariant branes

were characterized as delta-function sources.

5. Conclusions

In this paper we present a regularization procedure for resolving the singularities in the

most general axially symmetric, 4D-flat solutions to 6D gauged, chiral supergravity. This

procedure resolves the singularities of these geometries using an explicit, but broad, class

of cylindrical 4-branes that couple with the bulk Maxwell, dilaton and gravitational fields.

The space interior to these 4-branes is capped off using the most general smooth, 4D-flat,

and axially symmetric solutions to the same 6D supergravity equations that were used in

the bulk between the two branes. Our analysis provides the necessary tools required to

precisely explore the connections between properties of the bulk field configurations and

the structure of the branes which source them.

We keep our analysis very general, with the goal of being able to map out these

connections with as few restrictions as possible. We show, in particular, that the class

of caps and 4-brane actions we consider contain sufficient numbers of parameters to cap

an arbitrary axially-symmetric and 4D-flat bulk geometry. We also show that once the

properties of one of the 4-brane caps is specified, there are sufficient parameters in the

bulk geometry and in the other cap to complete the geometry. This both identifies the

properties of the bulk sourced by a given brane, and precisely identifies how the properties

of the brane at the other end of the bulk are dictated by those of the source brane with

which one starts.

Knowing the properties of the caps shows that the presence of regularizing branes has

important consequences on the properties of the bulk solutions. In particular, we show how

the classical degeneracy amongst bulk geometries having different volumes can be lifted

by the coupling of the 4-branes with the 6D dilaton. This provides a stabilization mech-

anism for the bulk, which relates the size of the extra dimensions with brane properties.

By performing a dimensional reduction we also identify the effective 4D potential which

captures this stabilization mechanism in the low-energy limit. We are able to do because

our regulated 6D configurations are smooth everywhere, with the bulk fields not diverging

at the brane positions (as they do for the effective co-dimension two 3-branes obtained in

the thin-brane limit when the circumference of the 4-brane is taken to zero).

There are several directions in which our geometrical construction of the regularizing

caps might be extended. First, the form of 4-brane action considered could be further

generalized, such as by depending on additional brane-localized fields. The back-reaction
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of such fields on the bulk configuration could then be consistently taken into account by

studying their effects on the continuity and junction conditions. An important special case

along these lines consists of studying the effects of integrating out massive brane fields, to

see how this affects the condition of 4D flatness. Work along these lines is currently in

progress [39].

Alternatively, our analysis could also be extended by generalizing the class of bulk

configurations for which caps can be constructed. Of particular interest is such an extension

to bulk geometries which are not 4D flat [30], for which one might imagine using regulating

cap geometries which are less symmetric than the ones we consider here. Alternatively,

extensions to configurations in more than six dimensions are also of interest, since bulk

fields generically diverge at brane positions in this case as well.

Such constructions would be particularly useful for identifying more precisely how the

cosmological constant problem gets rephrased in its extra-dimensional context. For these

purposes it is important to be able to find regularizing caps that are general enough to

characterize a large class of bulk geometries, in order to explore all of the naturalness issues

which might be associated with a given regularization procedure.
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